PRINCIPIO CERO DE LA TERMODINÁMICA
Frecuentemente, el lenguaje de las ciencias empíricas se apropia del vocabulario de la vida diaria. Así, aunque el término temperatura parece evidente para el sentido común, su significado adolece de la imprecisión del lenguaje no matemático. El llamado principio cero de la termodinámica, que se explica a continuación, proporciona una definición precisa, aunque empírica, de la temperatura.

Cuando dos sistemas están en equilibrio mutuo, comparten una determinada propiedad. Esta propiedad se puede medir, y se le puede asignar un valor numérico definido. Una consecuencia de ese hecho es el principio cero de la termodinámica, que afirma que si dos sistemas distintos están en equilibrio termodinámico con un tercero, también tienen que estar en equilibrio entre sí. Esta ropiedad compartida en el equilibrio es la temperatura.
Si uno de estos sistemas se pone en contacto con un entorno infinito que se encuentra a una temperatura determinada, el sistema acabará alcanzando el equilibrio termodinámico con su entorno, es decir, llegará a tener la misma temperatura que éste. (El llamado entorno infinito es una abstracción matemática denominada depósito térmico; en realidad basta con que el entorno sea grande en relación con el sistema estudiado.)

La temperatura se mide con dispositivos llamados termómetros. Un termómetro se construye a partir de una sustancia con estados fácilmente identificables y reproducibles, por ejemplo el agua pura y sus puntos de ebullición y congelación en condiciones normales. Si se traza una escala graduada entre dos de estos estados, la temperatura de cualquier sistema se puede determinar poniéndolo en contacto térmico con el termómetro, siempre que el sistema sea grande en relación con el termómetro.

PRIMER PRINCIPIO DE LA TERMODINÁMICA
La primera ley de la termodinámica da una definición precisa del calor, otro concepto de uso corriente.
Cuando un sistema se pone en contacto con otro más frío que él, tiene lugar un proceso de igualación de las temperaturas de ambos. Para explicar este fenómeno, los científicos del siglo XVIII conjeturaron que una sustancia que estaba presente en mayor cantidad en el cuerpo de mayor temperatura fluía hacia el cuerpo de menor temperatura. Según se creía, esta sustancia hipotética llamada calórico era un fluido capaz de atravesar los medios materiales.

Por el contrario, el primer principio de la termodinámica identifica el calórico, o calor, como una forma de energía. Se puede convertir en trabajo mecánico y almacenarse, pero no es una sustancia material. Experimentalmente se demostró que el calor, que originalmente se medía en unidades llamadas calorías, y el trabajo o energía, medidos en julios, eran completamente equivalentes. Una caloría equivale a 4,186 julios.

El primer principio es una ley de conservación de la energía. Afirma que, como la energía no puede crearse ni destruirse dejando a un lado las posteriores ramificaciones de la equivalencia entre masa y energía la cantidad de energía transferida a un sistema en forma de calor más la cantidad de energía transferida en forma de trabajo sobre el sistema debe ser igual al aumento de la energía interna del sistema. El calor y el trabajo son mecanismos por los que los sistemas intercambian energía entre sí.

En cualquier máquina, hace falta cierta cantidad de energía para producir trabajo; es imposible que una máquina realice trabajo sin necesidad de energía. Una máquina hipotética de estas características se denomina móvil perpetuo de primera especie. La ley de conservación de la energía descarta que se pueda inventar nunca una máquina así. A veces, el primer principio se enuncia como la imposibilidad de la existencia de un móvil perpetuo de primera especie.

La segunda ley de la termodinámica da una definición precisa de una propiedad llamada entropía. La entropía se puede considerar como una medida de lo próximo o no que se halla un sistema al equilibrio; también se puede considerar como una medida del desorden (espacial y térmico) del sistema.

La segunda ley afirma que la entropía, o sea, el desorden, de un sistema aislado nunca puede decrecer. Por tanto, cuando un sistema aislado alcanza una configuración de máxima entropía, ya no puede experimentar cambios: ha alcanzado el equilibrio. La naturaleza parece pues preferir el desorden y el caos. Se puede demostrar que el segundo principio implica que, si no se realiza trabajo, es imposible transferir calor desde una región de temperatura más baja a una región de temperatura más alta.

El segundo principio impone una condición adicional a los procesos termodinámicos. No basta con que se conserve la energía y cumplan así el primer principio. Una máquina que realizara trabajo violando el segundo principio se denomina móvil perpetuo de segunda especie, ya que podría obtener energía continuamente de un entorno frío para realizar trabajo en un entorno caliente sin coste alguno. A veces, el segundo principio se formula como una afirmación que descarta la existencia de un móvil perpetuo de segunda especie.

TERCER PRINCIPIO DE LA TERMODINÁMICA

El segundo principio sugiere la existencia de una escala de temperatura absoluta con un cero absoluto de temperatura. El tercer principio de la termodinámica afirma que el cero absoluto no se puede alcanzar por ningún procedimiento que conste de un número finito de pasos. Es posible acercarse indefinidamente al cero absoluto, pero nunca se puede llegar a él.

5 comentarios en “Los Fundamentos: La Termodinámica – Los principios

  1. Hola, soñé algo que no recuerdo, pero al despertar había una frase en me cabeza: «COMBINACIÓN DE PRINCIPIOS DE TERMODINÁMICA». Existe esto???, cuáles son sus implicaciones, sus alcances???
    Gracias

    Me gusta

  2. hola su publicacion de los procesos termodinamicos con interesantes y utiles para poder hacer las tareas de fisica, pero yo lo que necesito son ejmplos de los procesos suban unos a internet para poderlos copiar y explicarselos a mi profesor

    Me gusta

Puedes decir algo sobre la entrada actual…