termodinamica

Tercera Ley de la Termodinamica y Ley Cero de la Termodinamica

Posted on

Ley Cero de la Termodinámica (de Equilibrio):

“Si dos objetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí”.

Como consecuencia de esta ley se puede afirmar que dos objetos en equilibrio térmico entre sí están a la misma temperatura y que si tienen temperaturas diferentes, no se encuentran en equilibrio térmico entre sí.

Tercera Ley de la Termodinámica.

La tercera ley tiene varios enunciados equivalentes:

“No se puede llegar al cero absoluto mediante una serie finita de procesos”

Es el calor que entra desde el “mundo exterior” lo que impide que en los experimentos se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cual cesa el movimiento de las partículas. El cero absoluto (0 K) corresponde aproximadamente a la temperatura de – 273,16ºC. Nunca se ha alcanzado tal temperatura y la termodinámica asegura que es inalcanzable.

“La entropía de cualquier sustancia pura en equilibrio termodinámico tiende a cero a medida que la temperatura tiende a cero”.

“La primera y la segunda ley de la termodinámica se pueden aplicar hasta el límite del cero absoluto, siempre y cuando en este límite las variaciones de entropía sean nulas para todo proceso reversible”.

FUENTE: http://www.jfinternational.com/mf/tercera-ley-termodinamica.html

La Ley 0 de la termodinámica

Posted on

La termodinámica, por definirla de una manera muy simple, fija su atención en el interior de los sistemas físicos, en los intercambios de energía en forma de calor que se llevan a cabo entre un sistema y otro. A las magnitudes macroscópicas que se relacionan con el estado interno de un sistema se les llama coordenadas termodinámicas; éstas nos van a ayudar a determinar la energía interna del sistema. En resumen, el fin último de la termodinámica es encontrar entre las coordenadas termodinámicas relaciones generales coherentes con los principios básicos de la física (recuérdese el principio de la conservación de la energía que tratamos en el número 3 de “Horizonte Social).

La termodinámica basa sus análisis en algunas leyes: La Ley “cero”, referente al concepto de temperatura, la Primera Ley de la termodinámica, que nos habla del principio de conservación de la energía, la Segunda Ley de la termodinámica, que nos define a la entropía. A continuación vamos a hablar de cada una de estas leyes, haciendo hincapié en la segunda ley y el concepto de entropía. Termodinámica, campo de la física que describe y relaciona las propiedades físicas de la materia de los sistemas macroscópicos, así como sus intercambios energéticos. Los principios de la termodinámica tienen una importancia fundamental para todas las ramas de la ciencia y la ingeniería.

Un concepto esencial de la termodinámica es el de sistema macroscópico, que se define como un conjunto de materia que se puede aislar espacialmente y que coexiste con un entorno infinito e imperturbable. El estado de un sistema macroscópico se puede describir mediante propiedades medibles como la temperatura, la presión o el volumen, que se conocen como variables de estado.

Es posible identificar y relacionar entre sí muchas otras variables termodinámicas (como la densidad, el calor específico, la compresibilidad o el coeficiente de dilatación), con lo que se obtiene una descripción más completa de un sistema y de su relación con el entorno. Todas estas variables se pueden clasificar en dos grandes grupos: las variables extensivas, que dependen de la cantidad de materia del sistema, y las variables intensivas, independientes de la cantidad de materia.

Cuando un sistema macroscópico pasa de un estado de equilibrio a otro, se dice que tiene lugar un proceso termodinámico. Las leyes o principios de la termodinámica, descubiertos en el siglo XIX a través de meticulosos experimentos, determinan la naturaleza y los límites de todos los procesos termodinámicos.

La Ley cero

La Ley cero de la termodinámica nos dice que si tenemos dos cuerpos llamados A y B, con diferente temperatura uno de otro, y los ponemos en contacto, en un tiempo determinado t, estos alcanzarán la misma temperatura, es decir, tendrán ambos la misma temperatura. Si luego un tercer cuerpo, que llamaremos C se pone en contacto con A y B, también alcanzará la misma temperatura y, por lo tanto, A, B y C tendrán la misma temperatura mientras estén en contacto.

De este principio podemos inducir el de temperatura, la cual es una condición que cada cuerpo tiene y que el hombre ha aprendido a medir mediante sistemas arbitrarios y escalas de referencia (escalas termométricas).

Otra interpretación de la ley cero de la termodinámica que establece:

Si un cuerpo A está en equilibrio térmico con un cuerpo C y un cuerpo B también está en equilibrio térmico con el cuerpo C, entonces los cuerpos A y B están en equilibrio térmico. Esta curiosa nomenclatura se debe a que los científicos se dieron cuenta tardíamente de la necesidad de postular lo que hoy se conoce como la ley cero: si un sistema está en equilibrio con otros dos, estos últimos, a su vez, también están en equilibrio. Cuando los sistemas pueden intercambiar calor, la ley cero postula que la temperatura es una variable de estado, y que la condición para que dos sistemas estén en equilibrio térmico es que se hallen a igual temperatura.

Ley cero de la termodinámica:

El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, entre otras) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se les conoce como coordenadas termodinámicas del sistema.

A este principio se le llama del equilibrio termodinámico. Si dos sistemas A y B están en equilibrio termodinámico, y B está en equilibrio termodinámico con un tercer sistema C, entonces A y C están a su vez en equilibrio termodinámico. Este principio es fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición 0.

LEY CERO DE LA TERMODINÁMICA. (Explicación)

Cuando dos cuerpos están en equilibrio térmico con un tercero se encuentran en equilibrio térmico entre sí.

A fin de explicar el concepto de equilibrio térmico considere dos bloques de cobre de la misma geometría y peso, aislados de los alrededores, pero en contacto entre sí. Uno de los bloques esta mas caliente que el otro por lo tanto su temperatura es mayor, su resistencia eléctrica y su volumen también lo son. Al entrar en contacto los dos bloques aislados de sus alrededores se produce un intercambio(interacción), energética, que puede observarse a través del decremento de temperatura, volumen y resistencia eléctrica en el bloque mas caliente; al mismo tiempo se lleva acabo un aumento de las mismas propiedades en el bloque frío. Cuando todos los cambios observables cesan, esta interacción la térmica o de calor a terminado y se dice que ambos bloques han alcanzado el equilibrio térmico.

Observe que la propiedad denominada temperatura es una medida del nivel energético de los cuerpos y determina cuando se encuentra en equilibrio térmico con otro cuerpo o con un sistema.

FUENTE:
http://www.mitecnologico.com/Main/LeyCeroTermodinamica
http://es.wikipedia.org/wiki/Termodin%C3%A1mica
http://es.wikipedia.org/wiki/Principio_Cero_de_la_Termodin%C3%A1mica

El calor

Posted on

INTRODUCCIÓN

En física, es la transferencia de energía de una parte a otra de un cuerpo, o entre diferentes cuerpos, en virtud de una diferencia de temperatura. El calor es energía en tránsito; siempre fluye de una zona de mayor temperatura a una zona de menor temperatura, con lo que eleva la temperatura de la segunda y reduce la de la primera, siempre que el volumen de los cuerpos se mantenga constante. La energía no fluye desde un objeto de temperatura baja a un objeto de temperatura alta si no se realiza trabajo.

Hasta principios del siglo XIX, el efecto del calor sobre la temperatura de un cuerpo se explicaba postulando la existencia de una sustancia o forma de materia invisible, denominada calórico. Según la teoría del calórico, un cuerpo de temperatura alta contiene más calórico que otro de temperatura baja; el primero cede parte del calórico al segundo al ponerse en contacto ambos cuerpos, con lo que aumenta la temperatura de dicho cuerpo y disminuye la suya propia. Aunque la teoría del calórico explicaba algunos fenómenos de la transferencia de calor, las pruebas experimentales presentadas por el físico británico Benjamin Thompson en 1798 y por el químico británico Humphry Davy en 1799 sugerían que el calor, igual que el trabajo, corresponde a energía en tránsito (proceso de intercambio de energía). Entre 1840 y 1849, el físico británico James Prescott Joule, en una serie de experimentos muy precisos, demostró de forma concluyente que el calor es una transferencia de energía y que puede causar los mismos cambios en un cuerpo que el trabajo.

2.
TEMPERATURA

La sensación de calor o frío al tocar una sustancia depende de su temperatura, de la capacidad de la sustancia para conducir el calor y de otros factores. Aunque, si se procede con cuidado, es posible comparar las temperaturas relativas de dos sustancias mediante el tacto, es imposible evaluar la magnitud absoluta de las temperaturas a partir de reacciones subjetivas. Cuando se aporta calor a una sustancia, no sólo se eleva su temperatura, con lo que proporciona una mayor sensación de calor, sino que se producen alteraciones en varias propiedades físicas que se pueden medir con precisión. Al variar la temperatura, las sustancias se dilatan o se contraen, su resistencia eléctrica cambia y, en el caso de un gas, su presión varía. La variación de alguna de estas propiedades suele servir como base para una escala numérica precisa de temperaturas (ver más adelante).

image

La temperatura depende de la energía cinética media (o promedio) de las moléculas de una sustancia; según la teoría cinética (véase Gas; Termodinámica), la energía puede corresponder a movimientos rotacionales, vibracionales y traslacionales de las partículas de una sustancia. La temperatura, sin embargo, sólo depende del movimiento de traslación de las moléculas. En teoría, las moléculas de una sustancia no presentarían actividad traslacional alguna a la temperatura denominada cero absoluto. Véase Molécula.

3.
ESCALAS DE TEMPERATURA

En la actualidad se emplean diferentes escalas de temperatura; entre ellas están la escala Celsius —también conocida como escala centígrada—, la escala Fahrenheit, la escala Kelvin, la escala Rankine o la escala termodinámica internacional (véase Termómetro). En la escala Celsius, el punto de congelación del agua equivale a 0 °C y su punto de ebullición a 100 °C. Esta escala se utiliza en todo el mundo, en particular en el trabajo científico. La escala Fahrenheit se emplea en los países anglosajones para medidas no científicas y en ella el punto de congelación del agua se define como 32 °F y su punto de ebullición como 212 °F. En la escala Kelvin, la escala termodinámica de temperaturas más empleada, el cero se define como el cero absoluto de temperatura, es decir, -273,15 °C. La magnitud de su unidad, llamada kelvin y simbolizada por K, se define como igual a un grado Celsius. Otra escala que emplea el cero absoluto como punto más bajo es la escala Rankine, en la que cada grado de temperatura equivale a un grado en la escala Fahrenheit. En la escala Rankine, el punto de congelación del agua equivale a 492 °R y su punto de ebullición a 672 °R.

En 1933, científicos de treinta y una naciones adoptaron una nueva escala internacional de temperaturas, con puntos fijos de temperatura adicionales basados en la escala Kelvin y en principios termodinámicos. La escala internacional emplea como patrón un termómetro de resistencia de platino (cable de platino) para temperaturas entre -190 °C y 660 °C. Desde los 660 °C hasta el punto de fusión del oro (1.064 °C) se emplea un termopar patrón: los termopares son dispositivos que miden la temperatura a partir de la tensión producida entre dos alambres de metales diferentes (véase Termoelectricidad). Más allá del punto de fusión del oro las temperaturas se miden mediante el llamado pirómetro óptico, que se basa en la intensidad de la luz de una frecuencia determinada que emite un cuerpo caliente.

En 1954, un acuerdo internacional adoptó el punto triple del agua —es decir, el punto en que las tres fases del agua (vapor, líquido y sólido) están en equilibrio— como referencia para la temperatura de 273,16 K. El punto triple se puede determinar con mayor precisión que el punto de congelación, por lo que supone un punto fijo más satisfactorio para la escala termodinámica. En criogenia, o investigación de bajas temperaturas, se han obtenido temperaturas de tan sólo 0,00001 K mediante la desmagnetización de sustancias paramagnéticas. En las explosiones nucleares (véase Armas nucleares) se han alcanzado momentáneamente temperaturas evaluadas en más de 100 millones de kelvins.

image

4.
UNIDADES DE CALOR

En las ciencias físicas, la cantidad de calor se expresa en las mismas unidades que la energía y el trabajo, es decir, en julios. Otra unidad es la caloría, definida como la cantidad de calor necesaria para elevar la temperatura de 1 gramo de agua a 1 atmósfera de presión desde 15 hasta 16  °C. Esta unidad se denomina a veces caloría pequeña o caloría gramo para distinguirla de la caloría grande, o kilocaloría, que equivale a 1.000 calorías y se emplea en nutrición. La energía mecánica se puede convertir en calor a través del rozamiento, y el trabajo mecánico necesario para producir 1 caloría se conoce como equivalente mecánico del calor. A una caloría le corresponden 4,1855 julios. Según la ley de conservación de la energía, todo el trabajo mecánico realizado para producir calor por rozamiento aparece en forma de energía en los objetos sobre los que se realiza el trabajo. Joule fue el primero en demostrarlo de forma fehaciente en un experimento clásico: calentó agua en un recipiente cerrado haciendo girar unas ruedas de paletas y halló que el aumento de temperatura del agua era proporcional al trabajo realizado para mover las ruedas.

Cuando el calor se convierte en energía mecánica, como en un motor de combustión interna, la ley de conservación de la energía también es válida. Sin embargo, siempre se pierde o disipa energía en forma de calor porque ningún motor tiene una eficiencia perfecta. Véase Caballo de vapor.

5.
CALOR LATENTE

El cambio de temperatura de una sustancia conlleva una serie de cambios físicos. Casi todas las sustancias aumentan de volumen al calentarse y se contraen al enfriarse. El comportamiento del agua entre 0 y 4 °C constituye una importante excepción a esta regla (véase Hielo). Se denomina fase de una sustancia a su estado, que puede ser sólido, líquido o gaseoso. Los cambios de fase en sustancias puras tienen lugar a temperaturas y presiones definidas (véase Regla de las fases). El paso de sólido a gas se denomina sublimación, de sólido a líquido fusión, y de líquido a vapor vaporización. Si la presión es constante, estos procesos tienen lugar a una temperatura constante. La cantidad de calor necesaria para producir un cambio de fase se llama calor latente; existen calores latentes de sublimación, fusión y vaporización (véase Destilación). Si se hierve agua en un recipiente abierto a la presión de 1 atmósfera, la temperatura no aumenta por encima de los 100  °C por mucho calor que se suministre. El calor que se absorbe sin cambiar la temperatura del agua es el calor latente; no se pierde, sino que se emplea en transformar el agua en vapor y se almacena como energía en el vapor. Cuando el vapor se condensa para formar agua, esta energía vuelve a liberarse (véase Condensación). Del mismo modo, si se calienta una mezcla de hielo y agua, su temperatura no cambia hasta que se funde todo el hielo. El calor latente absorbido se emplea para vencer las fuerzas que mantienen unidas las partículas de hielo, y se almacena como energía en el agua. Para fundir 1 kg de hielo se necesitan 19.000 julios, y para convertir 1 kg de agua en vapor a 100 °C, hacen falta 129.000 julios.

6.
CALOR ESPECÍFICO

La cantidad de calor necesaria para aumentar en un grado la temperatura de una unidad de masa de una sustancia se conoce como calor específico. Si el calentamiento se produce manteniendo constante el volumen de la sustancia o su presión, se habla de calor específico a volumen constante o a presión constante. En todas las sustancias, el primero siempre es menor o igual que el segundo. El calor específico del agua a 15 °C es de 4.185,5 julios por kilogramo y grado Celsius. En el caso del agua y de otras sustancias prácticamente incompresibles, no es necesario distinguir entre los calores específicos a volumen constante y presión constante ya que son aproximadamente iguales. Generalmente, los dos calores específicos de una sustancia dependen de la temperatura.

Véase también Calorimetría.

image

7.
TRANSFERENCIA DE CALOR

Los procesos físicos por los que se produce la transferencia de calor son la conducción y la radiación. Un tercer proceso, que también implica el movimiento de materia, se denomina convección. La conducción requiere contacto físico entre los cuerpos —o las partes de un cuerpo— que intercambian calor, pero en la radiación no hace falta que los cuerpos estén en contacto ni que haya materia entre ellos. La convección se produce a través del movimiento de un líquido o un gas en contacto con un cuerpo de temperatura diferente.